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INTRODUCTION

Recent studies have demonstrated that the practice of delay firing commonly used for

industrial explosions often produces observable modulations in the amplitude spectra of regional

seismic signals that are not observed in earthquakes (Baumgardt and Ziegler, 1988; Smith, 1989;

Hedlin et al., 1989; Baumgardt and Young, 1990; Hedlin et al., 1990). The form of the delay-

ti-ed explosion spectrum depends upon, among other factors, the spatial pattern of the charges, the

variation in charge sizes, the delay time intervals between the firing of individual charges and the

azimuth of the recording station from the source. Because single event sources such as smaller

earthquakes or nuclear tests tend not to produce modulated source spectra, the observation of

significant spectral modulations could provide a useful discriminant. However, path and receiver

effects may complicate the situation. For example, the spectra of the regional seismic phases Pn,

Pg, Sn and Lg can be influenced by the structure of the crustal waveguide and the anelastic

absorption process will diminish spectral enhancements at high frequencies. The resonance effects

of near surface, low velocity material near the source and near the receiver also can, in principle,

introduce spectral modulations.

In this study, we examine the spectra recorded at near regional distances from large surface

mining explosions and compare them with theoretical spectra derived on the basis of information

contained in the blaster's logbooks. Additionally, we compare the explosion signals with those of

some small earthquakes in the same source region, featuring similar propagation paths to the

recording stations. We study the cause of the observed modulations in the explosion spectra, the

effect of different source-station propagation paths on the spectra, and the spectral differences

observed between the explosions and the earthquakes.

Using the theoretical source as a basis for comparison, we also test the utility of a

deconvolution technique to recover the explosion source-time function from the recorded Lg phase.



EXPLOSION SPECTRAL MODULATION

Generally, surface mine or quarry blasting operations employ explosive charges in holes

that are arranged spatially in one or more rows. The individual charges are usually fired in a time

sequence designed to achieve objectives such as proper rock breakage, reduction of fly rock,

directed movement of the fractured rock mass, and reduced levels of ground motion. The time

intervals (delays) between the individual subexplosions may be on the order of a few milliseconds

to hundreds of milliseconds, depending on the application (Langefors and Kihlstrom, 1963; E.I.

du Pont de Nemours & Co., 1978). For large mining explosions, similar to those studied here, a

variety of different delays may be employed.

Baumgardt and Ziegler (1988), Smith (1989) and Hedlin et al. (1990) discuss the origin of

spectral modulations in regional recordings of industrial explosions. Assuming that the explosion

source-time function is a linear superposition of individual subexplosions (Stump and Reinke,

1988), we can model the explosion source by convolving a source wavelet S(t), representing the

time series due to the firing of a single charge, with an impulse series W(t). In addition to the

firing times and amplitudes of the subexplosions, W(t) incorporates the spatial distribution of the

charge holes, the azimuth of the receiver and the wave velocity of the material. The source-time

function, A(t), for an explosion with n subexplosions observed at distances large in comparison to

the dimension of the charge layout, is given by

A(t) = S(t) * W(t), (1)

n
where W(t) = c c.8(t - V'.), (2)

j=l J J

and = t. -(x. sine + y. cosO)/V. (3)
j J J YJ



Here, 8(t) is the delta function, rj is the time of the j'th subexplosion defined relative to the time of

the initial subexplosion, xj and yj are the coordinates of the j'th subexplosion in a coordinate

system with origin at the location of the initial subexplosion. The constant (x- represents the
j

amplitude of the subexplosion. The azimuth 0 from origin to recording station is measured

clockwise from the Y axis and V is the phase velocity. The amplitude spectrum A(c) of the

source-time function is given by

A(co) = I S(o)W(o) 1, (4)

n
where W(o,)= E ajexp(iYt') (5)

j=t J

Consider a simple case where a row of 10 holes with equal charges is fired sequentially

from one end with a constant delay (xtj-Tj. 1) of 25 msec (Figure 1). For simplicity, assume

S(t)=5(t), a hole spacing (xj - xj. 1) of 4 meters and a velocity V of 3000 m/sec. The modulation of

A(w) in this case, regardless of station azimuth 0, involves two dominant effects. The first is

amplitude reinforcement due to the constant time intervals (delays) between subexplosions. This

reinforcement occurs at frequencies which are approximately integer multiples of the inverse delay

interval. The second effect is spectral "scalloping," characterized by amplitude minima at

frequencies given approximately by integer multiples of the inverse duration of the explosion

sequence. In the case for M=0 deg, the resulting spectrum is exactly that of the delay time series,

with spectral reinforcements at 0, 40, 80 ... Hz, and spectral minima at 4, 8, 12 ... Hz (Fig. I b).

For 0=90 deg, the apparent delays between the explosions (as seen from the station) are shortened

by a Doppler-like effect, due to the progression of the shotpoint in the direction of the receiver, and

the finite wave velocity. Hence, the spectral reinforcements and minima appear at higher

frequencies (Fig. 2a). The opposite effect happens for a receiver on an azimuth in the opposite

direction: the reinforcements and spectral minima are shifted to lower frequencies. In actual
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practice, there may be significant variation in individual delay times, due to variations in the lengths

and firing rates of detonating cords and blasting caps. This type of variation serves to reduce the

amplitudes of the higher frequency reinforcement harmonics, and effectively "fills in" the spectral

minima (Stump et al., 1989). Figure 2b shows the spectrum resulting from the previous case (0 =

0 deg) when a random error with zero mean and standard deviation equal to 10% of the mean delay

time is added to the times of the subexplosions. This "whitens" the spectrum by reducing the

amplitude of the high frequency peak at 80 Hz and filling up the high frequency minima. Note that

the effect of station azimuth and random variation of fiuing times is minimal for the low frequency

part of the spectrum.

Real explosions often incorporate several rows of charge holes which may be "decked"

(i.e., multiple delays and charges for upper and lower parts of the same hole). The firing of

multiple rows is generally done sequentially, with relatively large delays between rows so as to

allow time for the fractured rock mass to move away from the newly created free face. These row

delays may produce important amplitude reinforcements at relatively low frequencies. Figure 2c

shows the time series for a case where four rows of 10 holes each are fired with 0. 11 sec delays

between rows. As in the previous case, the delays between firings of adjacent holes in a row is

0.025 sec, and the azimuth 0 is 0 deg. The row delays produce additional amplitude

reinforcements at n/0.1 1 Hz or 9.1, 18.2, 27.3 Hz... etc., and the longer duration of the explosion

sequence (0.58 sec) produces a "scalloping" effect with amplitude minima more closely spaced in

frequency, compared to the previous case for a single row of charges (Fig. 2d).

DATA

The data set is derived from digital waveforms recorded by the Virginia Regional Seismic

Network. Figure 3a shows the locations of the network stations, along with the locations of four

explosions and the epicenters of two natural earthquakes. The network utilizes 1 Hz seismometers.

The analog seismic signals are transmitted to a central recording facility by FM telemetry and
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digitized at 100 samples/sec. The time series of these six events as recorded at station WMV are

shown in Figure 3b.

The explosions studied here were fired to remove the overburden from coal seams. We

obtained copies of the blaster's logs and used this information to model the explosion amplitude

spectrum by means of equations 1 through 5.

The detail of information contained in the logs varied among the individual explosi-"i•s.

I lowcvcr, in all cases, the nominal firing time of each charge could be ascertained. Other pertinent

information contained in the logs included the distance between rows (burden) and between holes
in a row (spacing), the types of millisecond delay connectors used (9, 17, 42 and 2(X) mscc, in

various combinations), the types of downhole delay bla.ting caps (450 or 5(X) msec), the total

charge weight used for each hole and the maximum weight per delay period. Important

ambiguities in the logs involve the distribution of charge weight within some of the decked holes

for three of the four explosions: also, details concerning the use and arrangement of high velocity

detonating cord and/or shock tubing (a lower velocity detonation device) were not available.

Additionally, only nominal firing times for the charges are available from the logbooks: Stump et

al. (1989) report that the standard deviation of mean firing times of common commercial initiation

devices is 5 msec. The main charge was a mixture of ammonium nitrate and fuel oil, initiated by a

small primer charge using nonelectric downhole blasting caps. The copies of the blasting logs and

other information, such as the orientation of the charge pattern with respect to North, were kindly

furnished by the Kentucky Department of Mines and Minerals (written communication).

Figure 4a shows the charge pattern for Explosion 1. It consisted of four rows of decked

charges with the initiation point in the center of the row adjacent to the free face. The burden and

spacing were 8.8 and I 1 meters, respectively. The majority of delays used between holes in a

given row were 17 msec, and each row was delayed 200 msec. The 56 charge holes were 31 cm

in diameter and were drilled to a depth of 34.1 m. The lower part of each hole was loaded with

1877 lbs of explosive. The bottom charge was separated from the top charge of 2248 lbs of

explosive by a 3 meter deck of drill cuttings. The top charge was fired using a 450 msec delay
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nonelectric cap: the bottom charge was delayed 50 rnsec by using a 5%) msec nonelectric cap.

Figure 4b shows the nominal delay time series W(t) for a station azimuth of 307 deg

The remaining three explosions involved in the study were also multi-row, decked designs

similar to Explosion 1. However, the distribution of charge weights between upper and lower

decks in some of the rows was not specified. Figur= 5 shows the model time series constructed

for Explosions 2 through 4, with charge weight distributed as suggested in the blaster's logbook.

OBSERVED SPECTRA VERSUS THEORETICAL

The explosions studied here produced time itnadependent spectral modulations. This

phenomenon has been noted previously (see, e.g., Baumgardt and Ziegler, 1988) from industrial

explosions, and is an indication that the modulations are source related and not due to multipathing.

It is most apparent when the data are displayed in a sonogramn or time-frequency plot wherein the

spectral content of the entire signal is plotted as a function of time.

Figure 6a shows a sonogram for Explosion 2. It was created using an approach similar to

that of Hledlin et al. (1989). Instrument corrected acceleration power spectra were computed using

non-overlapping five second windows, for tinmes beginning well before the signal onset and

extending into the signal coda. The spectra were detrended and amplitude normalized by

subtracting a second degree polynomial fitacd by Itast squares to the logarithms of acceleration

power. Fffects of noise were iuinimizcd by cotilin rl•ng only those values that exceed the pre-signal

noise levels by a factor of 5. Note that We ýpect;al peaks persist throughout the signal, from P

onset to well into the Lg coda.

In Figures 7 through 10. we compazre the acceleration amplitude spectra of Lg and Pg with

model spectra for each of the four explosions. The tick marks in Figure 3b indicate the time

windows used for analysis. The Lg spectra were derived from 20 sec time windows and were

snitoothed with a 4 point moving average. The Pg windows were 6 sec in duration, and smxothing

was done with a 2 point moving average. All spcctia have been corrected for instrument response
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and Inc lastic attenua tion. The assume0I Pg and I .g quality fact or Is 07: ,l Ii7, d'riveld I rn

oTbservattions of regional earthquake Lg coda decay at the samt e netwwork statio;s used in thii i .c'

study (Chapman and Rogers, 1989). However, the validity of this attenuation model for surface

sources has not yet been tested. Also, it is possible that coda Q values are not appropriate for Pg.

Figure 7a shows the Lg spectrum recorded at WMV from Explosion I, along with the pre-

P noise background. Both spectra were calculated using 20 second time windows, and smoothed

using a 4 point moving average. Note that the signial/niioise ratio exceeds 2 at lIcquenLCies leC:ý thl lil

15 Hz. This station, along with station VWV, gave the best signa!Inoise ratios. Figure 7b shows

the vertical component Lg acceleration spectra (20 sec windows) at stations WMV, VWV and

CVL. in comparison with the model acceleration spectnrm for Explosion 1. The observed spectra

are plotted at fIrequencies where the signal/noise ratio excCeeds 2. Note the goxod agreement hetwecen

observed and model spectra at frequencies less than about 7 Hz. The similarity of spectra at the

three stations clearly demonstrates that the significant modulations at low frequency are path and

site independent.

Figure 7c shows the Pg acceleration spectrum from Explosion I at W`MV, VWV and CVL.

Agreement between the Pg spectra and the model spectrum is not as good as for Lg. This may he

due in part to the lower signal/noise ratios for Pg compared to Lg.

A potential for significant error in the modeling of the high frequency spectrum exists

because of uncertainty involving the detonation velocity and arrangement of the surface and

downhole shock tubing and/or detonating cord. The logs did not specify which type of device was

used to initiate the explosions. It is possible that both types of initiation device were employed:

e.g., high velocity detonating cord can be used on the surface, with lower velocity shock tubing

used to initiate the downhole caps. Modeling of the effect shows little impact on the spectra at

frequencies less than 20 Hz if the effective between-charge detonation velocity is in excess of 6000

rn/sec. It appears that the time de'.ys introduced from this source have a minor effect on the

observed amplitude spectra at the relatively low frequencies (7 Hz and less) where we have la-ge

signal/noise ratios.

7



The theoretical model assumes a Brune (1970) wo2 acceleration amplitude spectrum with

comer frequency wc for the source wavelet: hence, in equation (4),

2
(1

S~co)IS(W 1 (6)

The simple ci2 source spectrum was chosen for convenience. Because of uncertainties regarding

path attenuation effects, use of a more complex model seems unjustified. Figure 8 shows the

observed amplitude spectra of both Lg and Pg at stations WMV and VWV in comparison with

model spectra constructed for a range of comer frequency values. Although somewhat equivocal,

it appears that the Lg spectra imply a lower comer frequency than the Pg phase. Values of 3 Hz

for Lg and 10 Hz for Pg were used to construct the model spectra shown in Figure 7. Note

however, that in Figure 8, the comer frequencies for both phases appear somewhat higher for

station WMV than for VWV. This site dependent effect is also observed in the spectra of two

earthquakes recorded at VWV and WMV, suggesting that the low apparent comer frequencies,

especially for Lg, are not due to the explosion source, but rather represent a propagation

phenomenon, that may involve recording site response. Single charge explosions of the size

studied here are expected to produce source spectra with comer frequencies considerably higher

tha () 1tz. Stump ct ;il. (1991) modeled the near field spectra of cylindrical charge explosions in

hard rock using a modified Mueller and Murphy (1971) source model. They suggest that the

equivalent elastic radius is approximately equal to the length of the charge column, with a 150 lb

charge of length 18 m producing a spectrum .,,ith comer frequency near 50 Hz. Although the

charge weights involved in the explosions studied here greatly exceed 150 lbs, the length of the

charges are similar to those studied by Stump et al. (1991).

Other parameters in the theoretical model include the charge weight - amplitude scaling

relations, phase velocity, and receiver azimuth. Because not all holes were loaded to the same

charge weight, the nature of the amplitude - charge weight relationship will affect the modulation
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pattern of the explosion spectrum. In the explosion designs studied here, this effect arises largely

due to differences in charge weight between the upper and lower decks in each row of explosives.

To examine the sensitivity of the model spectra to the amplitude - charge weight scaling, we

compared the model spectra assuming that amplitude scales in direct proportion to charge weight,

as opposed to the cube root of the weight. This range of values includes the results of Medearis

(1979) who studied peak time domain and spectral amplitudes of industrial explosions. Fig.rure 9a

shows the results of this comparison. Other than a broadband change in the spectral level, the

cffect on the mcxlulation pattern of the model spcctrum for Explosion I Is vrry minior.

The effect of phase velocity on the spectrum of Explosion 1 is shown in Figure 9b. For

that design, the modulation pattern at frequencies less than 20 Hz is virtually independent of

velocities in excess of 3000 m/sec, the assumed shear wave velocity of the Paleozoic sandstones

and shales known to be present in the mine locale. However, a velocity of 1500 m/sec produces a

substantially different modulation pattern at frequencies higher than 10 Hz. Clearly, the degree to

which the phase velocity influences the spectrum of the explosion depends upon the azimuth of the

receiver and upon the charge spacing and delay times. For the four explosions modeled in this

study, the phase velocity appears not to be a critical parameter at frequencies of 15 Hz and less,

where signal/noise ratios are adequate.

Figure 9c shows the effect of station azimuth upon the model spectrum of Explosion 1.

The assumed phase velocity is 3000 m/sec. Although the very low frequency spectrum (less than

5 Hz) is only slightly affected by a ±90 deg variation in station azimuth for this explosion design,

the spectrum at higher frequencies is strongly influenced by the azimuth, and it is an important

parameter for modeling the explosion spectrum at frequencies less that 15 Hz.

The Lg acceleration spectra for Explosions 2, 3 and 4 are shown in Figure 10. As in the

previous example, the spectra were smoothed and plotted at frequencies where the signal/noise is

greater than 2. Although the exact charge weight distribution is in question for these explosions,

the overall shape and the frequencies of peaks and troughs in the observed spectra match those of
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the model spectra well. Again, the model Lg spectra source wavelet comer frequency is 3 Hz, and

the velocity assumed is 3000 m/sec.

The appearance of the spectra from all four explosions at frequencies less than about 7 Hz

is readily explained in terms of two effects. The most obvious aspect of the spectra are the

amplitude minima at approximately 1.2, 2.3 and 3.4 Hz. These are directly related to the apparent

duration of the explosion sequence and coincide with the amplitude nulls in the spectrum of a

square wave time function of duration T sec. The frequencies of the amplitude nulls are given by

n/T, where n= 1,2,3,... etc. The apparent duration T of Explosions 1 through 4 are 0.90, 0.93,

0.85 and 0.84 seconds, respectively.

The other major aspect of the observed spectra is the persistent strong amplitude peak near

5 Hz. This peak is the result of reinforcement due to a nominal row delay of 0.2 sec used in all of

the explosions.

EARTHQUAKE SPECTRA

The two earthquakes which occurred in eastern Kentucky provide an opportunity to compare

spectra from known explosions and earthquakes over similar source-station paths (Figure 3).

Figure 11 compares the Lg and Pg path corrected acceleration spectra from both

earthquakes and Explosion 1. The time windows used for station WMV are indicated in Figure 3.

Note that for the larger earthquake (#2), the maximum amplitude part of the Lg phase at WMV was

clipped, and in that case, the Lg spectrum was derived from a window somewhat later in the Lg

coda. The spectra were smoothed as previously described and amplitudes scaled so that the Lg and

Pg spectra overlap at high frequency.

The modulations apparent in the earthquake spectra are smaller in amplitude than those of

the explosion spectra at low frequencies, and the Pg and Lg modulations in the explosion spectra

are correlated, whereas those in the earthquake spectra are not. This lack of temporal stationarity
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of the earthquake spectral modulation pattern results in sonogram plots that appear essentially

random, without the strong time-independent spectral bands of the explosion sonogram (Figure 6).

SOURCE FUNCTION DECONVOLUTION

In the following, we test a technique involving cepstral filtering to recover the source-time

function of the explosion signals (Ulrych, 1971; Tribolet, 1979). We assume that the recorded

seismic signal is a convolution of the source time series with a random sequence representing the

impulse response of the transmission path. Under these assumptions, the source in the cepstral

domain is confined to small times (small quefrency values). Hence, the effects of the transmission

path can be reduced by suppressing large time values of the complex cepstrum. A difficulty arises

in computing the complex cepstrum, because a continuous phase function must be defined. This

generally requires that the principle values of the phase spectrum be "unwrapped". Various

approaches to the problem are discussed by Tribolet (1977). However, if the source-time function

is "minimum phase" the continuous phase function can be defined uniquely as the Hilbert

transform of the logarithm of the amplitude spectrum.

Let x(t) be the recorded time series and X(c) represent its Fourier transform. Then, in

polar form,

X(co) = IX(c.o)I exp {i8(co)} (7)

where @(w) is the phase spectrum. The Fourier transform of the complex cepstrum is given by

S(co) = In (X(co)) = lnIX(co)l + ie(o) (8)

where 8(wo) is a continuous function of frequency. The complex cepstrum, s(t), is obtained via the

inverse Fourier transform. Assuming x(t) to be minimum phase, the continuous phase is given by
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O((o) = H(lnIX(w)l) (9)

where H indicates the Hilbert transform. The cepstral filtering is accomplished by

s'(t) = a(t) s(t), (10)

where a(t) = 0, t < 0

a(t)= 1,0<t<T

a(t) = 0, t >T

In the above, T represents the duration of the cepstral gate. The deconvolved time series is

recovered by computing the direct Fourier transform of s'(t), followed by exponentiation and

inverse Fourier transformation.

An example of the process, using synthetic data, is shown in Figure 12a. The source

function is represented by four acceleration pulses, equally spaced in time, with equal amplitudes.

This source series is convolved with a random sequence, to simulate a recorded seismic signal,

then deconvolved using the minimum phase assumption. In this example, the minimum phase

deconvolution preserves the time intervals and amplitudes of the original source time series. This

will not be the case in general, as shown in Figure 12b. The minimum phase deconvolution

preserves the proper time intervals between source pulses only if the pulses are equally spaced in

time. When that is the case, the process will give a useful result when the pulse amplitudes are

nearly equal or else distributed such that the energy is concentrated early in the source time series.

Many, if not most, large mining explosion designs incorporate shot patterns and explosion delay

intervals which result in near constant time intervals between the firing of rows of explosions. As

shown above, these row delays can strongly impact the low frequency spectra recorded at larger

distances, and may be resolved using the process described above.
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The data set used to test the deconvolution technique consisted of Explosion 1, described

above, for which we have the most detailed information on the blast design. In addition to the two

earthquakes described previously (Figure 3), we deconvolved the signals from an additional

regional earthquake and three additional mining explosions, which originated at different mines.

The locations of these events are shown in Figure 13.

Figure 14 shows the results of the minimum phase deconvolution for each network station

from Explosion 1, as well as the network average deconvolution. In this and in all later examples,

the time series analyzed consisted of 20 second duration windows, beginning with the onset of the

Lg phase. The recorded data were instrument corrected to ground acceleration, and band-passed

with 6-pole Butterworth filters with corner frequencies at 0.3 and 15 Hz. The duration of the

cepstral gate was 1.0 second.

A model acceleration time series was constructed for Explosion 1 and is plotted for

comparison with the network average deconvolution in Figure 15. The model time series

incorporates a Brune source pulse with corner frequency 10 Hz, convolved with the firing

sequence shown in Figure 4b. Anelastic attenuation was represented by exp(-tOt*), where

t*--0.04. As shown in Figure 4, this explosion design involving four rows of explosives with a

constant row delay of 0.2 sec is clearly resolved in the deconvolved seismic data.

Figures 16, 17 and 18 show the deconvolutions obtained from Earthquakes 1, 2 and 3.

Identical processing was performed on all events, as described above. Note that the earthquake

deconvolutions indicate single, short duration source functions.

Figures 19, 20 and 21 show the deconvolution results for Explosions 5, 6 and 7 which

occurred at different mines. Figure 22 compares the deconvolutions derived from all events shown

in Figure 13. Information on the charge patterns and delay times used in Explosions 5 through 7 is

lacking. However, like Explosion 1, Explosion 5 exhibits evidence for source multiplicity. The

results for Explosions 6 and 7 are more ambiguous, but by analogy with the results obtained from

Explosion 1, and in contrast to the results from the earthquakes, the deconvolutions for the other
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explosions appear to exhibit evidence for source multiplicity and/or extended durations. Explosion

6 suggests a large delay period (approximately 0.4 sec).

CONCLUSIONS

The surface mine explosions studied here produced signals at near regional distance

featuring time independent spectral modulations of the type previously reported by Baumgardt and

Ziegler (1988), Smith (1989), Hedlin et al. (1989), Baumgardt and Young (1990) and Hedlin et al.

(1990). The dominant features of the modulation are independent of recording site and source-

station path. In contrast, natural earthquakes which occurred in the mine locale exhibit much flatter

acceleration spectra, with substantially larger high frequency amplitudes, and show no evidence of

time independent spectral modulation.

The explosion spectra were successfully reproduced at low frequency using a simple

model. The most obvious characteristics of the explosion spectra are amplitude minima controlled

by the total duration of the explosion sequence, and amplitude reinforcement due to relatively long

(0.2 sec) delays between the firing of multiple rows of explosives. The model spectra at low

frequency are relatively insensitive to station azimuth and phase velocity. However, as frequency

increases, the sensitivity of the models to station azimuth and to a lesser degree, phase velocity also

increases. Additionally, any random variation in the firing times of subexplosions strongly affects

the high frequency spectrum. Because of these complicating effects, and adequate signal/noise

ratios limited to less than 15 Hz, resolution of source features other than total duration and the

gross temporal pattern due to the 0.2 sec row delays was not possible. However, agreement

between the model Lg spectra and the observations at frequencies less than approximately 7 Hz

implies that for the study area at least, the Earth's transfer function for low frequency Lg waves is

very simple: i.e., it acts primarily as a low pass filter in terms of amplitude response.

The Pg and Lg explosion spectra show similar amplitude modulations. The Lg spectra

more closely matched the model spectra, but this may be due to larger Lg signal/noise ratios.
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Interestingly, the Pg spectra appear to have relatively larger amplitudes at high frequency than do

the Lg spectra. Recordings at smaller distances will be required to determine whether or not this

observation indicates real differences in the source amplitude spectra of the two phases, rather than

a path effect involving stronger attenuation of the Lg phase.

Deconvolution of the Lg phase by low-time cepstral gating effectively reveals source

multiplicity in some large mining explosions rccorded at near regional distnces. 'lhc ;The I .m I,)1

the deconvolution procedure used here depends upon the phase characteristics of the source

function. Minimum phase source series appear to be accurately preserved. Further work needs to

be done to extend this result to source functions with mixed phase characteristics.
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